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1

Stochastic processes
and random fields

1.1 Preliminaries

Probability spaces and random variables

Let Q be a set. A collection # of subsets of Q is called a o-field if it contains
an empty set and is closed under the operations of countable unions and
complements. The pair (Q, &) is called a measurable space. Elements of Q
are called samples and those of # are called events. Let P be a o-additive
measure on (Q, &). Itis called a probability if P(Q) = 1. The triple (Q, £, P)
is called a probability space.

A finite collection of events {A,,..., A,} is called independent if
P((Nk; A;) = [T=1 P(4,) holds for any subset {4; , ..., 4;,} of {4, ..., 4,}.
A collection of infinite events {4, : 4 € A} is called independent if any
finite subcollection of {4, : A € A} is independent. Let & be a subset of #.
If % is a o-field, it is called a sub o-field of #. Suppose now we are given a
finite collection {#, ..., &,} of sub o-fields of #. It is called independent
if for every choice 4,€ &. i=1, ..., n, the collection {4,,..., 4,} is
independent. An infinite collection {&, : A € A} of sub o-fields of # is called
independent if its arbitrary finite subcollection is independent.

A real valued measurable function X (w) defined on (Q, #)is called a real
random variable or simply a random variable. The random variable X (w)
may take values +c0, but we assume that X (w) takes finite values for almost
all w unless otherwise mentioned. We often suppress the sample w and
write it as X. If we can define the integral of X by the measure P, we denote
it by E[X] and call it the expectation of X, i.e.,

E[X] = L X(w) dP(w). )]

In later discussions we will often use the following notation
E[X:A]l= L X{w) dP(w). 2
Let S be a complete separable metric space and 4(S) be its topological

Borel field. A measurable map X from (Q, #) into (S, #(S)) is called a
random variable with values in S or S-valued random variable. If X is a
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random variable with values in § and B is an element of %(S), then the set
{w: X(w) € B} belongs to &#. For simplicity this set is denoted by {X e B}
or X € B. Now the collection of the sets {X € B: B e #(S)} is a sub o-field
of #. It is called the o-field generated by the random variable X and is
denoted by a(X). Let {X, : 1 € A} be a collection of random variables. The
smallest sub o-field of # containing { J;. , 6(X ) is denoted by o(X, : A € A)
and is called the o-field generated by {X,: 1€ A}.

Two families of random variables {X,; : 1€ A} and {X, :y € '} are called
independent if 6(X, : A € A) and 6(X, : y € I) are independent. The inde-
pendence of infinite families of random variables is defined similarly.

An event A is called a null event or a null set if P(4) = 0 holds. If a
proposition holds except for w belonging to a certain null set, it is said to
hold almost everywhere (abbreviated as a.e.) or almost surely (abbreviated
as a.s.). As an example for two random variables X and Y, ‘X'= Y as’
means that {w: X(w) # Y(w)} is a null set. We often do not distinguish
these X and Y and write simply X = Y.

For a sequence X,, X,, ..., X of real random variables, we introduce
three types of convergence.

(@) {X,} is said to converge to X almost everywhere or almost surely if for
almost all o, {X,(w)} converges to X (w).

(b) Let p > 1. Denote by L” the totality of random variables Y such that
E[]Y[?] < o0 and define the LP-norm by || Y|, = E[|Y|"]'*. If X,
X,,..., X arein L? and || X, — X, — O is satisfied, {X,} is said to
converge to X in L.

() {X,} is said to converge to X in probability if for any ¢>0
P(]X, — X| > &) converges to 0.

We give the well known relations on these three convergences without
proofs.

Theorem 1.1.1 The almost everywhere convergence implies the conver-
gence in probability. The LP-convergence implies the convergence in
probability. [

A collection of real random variables {X} is called uniformly integrable if

supJ‘ [ X3l dP—20 3)
a X j>e¢

is satisfied. For a sequence of uniformly integrable random variables, the
convergence in probability implies the convergence in L.
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Theorem 1.1.2 Let {X,} be a sequence of uniformly integrable random
variables. If {X,} converges to X in probability, then it convergesin L*. []

Let P,:n=1,2, ..., P be a sequence of probabilities on (S, £(S)). The
sequence { P, } is said to converge weakly to P if for any bounded continuous
function f on S, {{ f dP,} converges to | f dP. Now for an S-valued ran-
dom variable X, we define its law by the probability Py on (S, %(S)) such
that

Py(B)=P(X eB), forall Be%(S). @)

A sequence {X,} of S-valued random variables is then said to converge
weakly if the corresponding sequence of the laws converges weakly.

We shall quote some basic properties of the weak convergence. Proofs
of the following theorems (1.1.3—1.1.5) can be found in Billingsley [8] and
Ikeda—Watanabe [49].

Theorem 1.1.3 Let {P,:n=1,2,..., P} be a sequence of probabilities on
(S, #(S)). The following statements are equivalent.

(@) {P,} converges to P weakly.
(b) lim,_ P,(F) < P(F) holds for any closed subset F of S.
(¢) lim,.. P,(G) = P(G) holds for any open subset G of S. []

A family {P,: 1€ A} of probabilities over (S, %(S)) is called relatively
compact if any subset of {P,: A € A} contains a subsequence converging
weakly. A useful criterion for the relative compactness of the measures is
the tightness: a family {P, : A € A} of probabilities is called tight (or uni-
Sformly tight) if for any ¢ > O there exists a compact subset K, of S such that
P,(K,) > 1 — ¢ holds for all 1 € A.

Theorem 1.1.4 The family of probabilities {P, : . € A} on (S, #(S)) is rela-
tively compact if and only if it is tight. [

The following theorem, due to Skorohod, shows that the weak convergence
and the strong convergence are equivalent if the corresponding random
variables are defined on a suitable probability space.

Theorem 1.1.5 Let {P,} be a sequence of probabilities on (S, #(S)) converg-
ing weakly to P. Then on a suitable probability space (8, Z, P) we can
construct S-valued random variables X,, n=1, 2, ... and X satisfying the
Sfollowing properties.
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(@ Thelawsof X,,n=1,2,...,and X coincide with P,, n = 1,2, ... and
P, respectively.
(b) {X',,} converges to X almost everywhere. []

Conditional expectations

Let % be a sub o-field of # and let X be an integrable random variable.
An integrable ¥-measurable random variable X is called the conditional
expectation of X with respect to % if X satisfies

JXdP=JXdP, forall Ae %. 5
A A
The conditional expectation exists uniquely. We denote it by E[ X |%].

Theorem 1.1.6 Let X, Y, X,,n=1,2,... be integrable random variables and
4, H be sub o-fields of #.

(c.1) If a, b are constants, then E[aX + bY|9] = aE[X|9] + bE[Y|¥4] a.s.

(c.2) If X is9-measurable and XY is integrable, then E[ X Y|¥49] = XE[Y|¥4]
as.

(c3) If # < %, then E[E[X|¥9]|5#] = E[E[X|#]|¥4] = E[X|#] as.

(c.4) (Jensen’s inequality) Let f(x) be a convex function. If f(X) is integrable,
then f(E[X|¥9]) < E[f(X)|¥9] a.s. In particular, if | X|F is integrable
for p > 1, then |E[X|¥4]IF < E[|X|?|¥4] as.

(c.5) Let p = 1. If {X,,} converges to X in L?, then {E[X,|%9]1} converges to
E[X|%] in L".

(c.6) If {X,} converges to X with respect to the weak topology of LP?, then
{E[X,|%9]} converges to E[ X|¥] with respect to the weak topology of
Lr,. O

For the proof, see Neveu [103].

The conditional probability of the event A given the o-field ¥ is defined by
P(A]¥%) = E[x(A)|9], (6)

where y(A) is the indicator function of the set A. Then it has these three
properties:

(@ 0<P(4|%) <1as.

(b) P(Q|%) =1, P(|%) =0 as.

(c) forany pairwisedisjointsets A, 4,,..., P({ &, A|9) =)o, P(A,|9)
- as.

The§e are easily verified from the definition of the conditional probability.
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Exercise 1.1.7 Let X and Y be independent random variables with values
in complete separable metric spaces S and §’, respectively. Let g(x, y) be a
real measurable function on § x §’ such that g(X, Y) is integrable. Show
that

E[g(X, Y)lo(Y)] = Ig(x, T)Py(dx)  as.

where Py is the law of X.

1.2 Stochastic processes

Brownian motions

A collection of random variables X,, t e T with values in a complete
separable metric space S where T is a time set is called a stochastic process
with state space S. If T is an interval, it is called a stochastic process with
continuous parameter. If T is a discrete subset of R, it is called a stochastic
process with discrete parameter. When a sample o is fixed, X,(w), t € T can
be regarded as a function of ¢. It is called a sample path (or sample function)
of the stochastic process. In this book we shall mainly consider stochastic
processes with continuous parameter. In most cases the time set T will
be the finite interval [0, T], but the infinite interval T = [0, ) or T =
(—o0, 07 will be dealt with in some cases.

In this section we define three basic stochastic processes called Brownian
motions, martingales and Markov processes, which are the central topics
in this book. We first introduce some general notions on stochastic
processes.

Let X,, te T be a stochastic process with continuous parameter. It
is called measurable if X : T x Q- § is measurable with respect to the
product o-field #(T) ® &. The continuity of a stochastic process is defined
similarly as the convergence of random variables. Let X,, t € T be a real
valued stochastic process. It is called continuous in probability if for any
te T, X,,, converges to X, in probability as h tends to 0. If X, is in L?
and lim,_, | X,4, — X,l|, = O holds for any ¢, it is called continuous in
L?. Obviously a stochastic process continuous in L? is continuous in
probability.

If the sample function X,(w), t € T is a continuous function of ¢ for almost
all w, X, is called a continuous stochastic process. If the sample function
X,(w), t € T is a right continuous function of ¢ for almost all w, X, is called
a right continuous stochastic process.

A stochastic process X,, te T is called a modification of X,, te T if
P(X, = X,) = 1 holds for all ¢t of T. In most cases we do not distinguish
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between a stochastic process and its modification. However the properties
of sample functions can depend on the choice of modification, so it is
sometimes necessary to take a good modification of a given stochastic
process. In Section 1.4 we shall give a criterion for a given stochastic process
to have a modification of a continuous stochastic process.

Now let X, = (X}, ..., X?) be a continuous process with values in R?
having the mean vector m(t) = E[X,] and covariance matrix V(s,t) =
E[(X, — m(s))(X, — m())'] where ( ) stands for the transpose of the
vector ( ). It is called a Brownian motion if it has independent increments,
ie. forany 0<to<t; < <t,of T, X,, X,,, —X,:i=0,....,n—1
are independent random variables. Now if X, is a Brownian motion,
X, = X, —m(t) is also a Brownian motion. Further increments X;,
X,, —X,:i=0,...,n— 1are orthogonal to each other, i.c.

E[X, (X; -X)y1=0

Tiv1

it1

- X Y1=0, E[(X;, — X)X

i j+1

holds for any i # j. (See Exercise 1.1.7.) Then the covariance Vs, t) satisfies
the following:

(i) Vs, t) = V(r, r) where r = min{s, t},
(i) V(t) = V(t,t) increases with t.

A Brownian motion is called standard if m(t) = 0 and V{(t, t) = tE where E
is the identity matrix.

Martingales
Let {#:te T} be a family of sub o-fields of &. It is called a filtration of
sub o-fields of & if it satisfies the following three properties:

() Z.c#Fifs<t,
(ll) me>0 ,97”_8 = .9"-”
(iii) each # contains all null sets of #.

A stochastic process X,, te T is called (#,)-adapted if for each ¢, X, is
Z,-measurable.

Suppose that we are given a stochastic process X,, t € T, first. Let % be
the smallest o-field including (),>06(X;:s <t + ¢) and all null sets of #.
Then {#,} is a filtration and X, is an (#;)-adapted process. It is called the
filtration generated by the process X,.

In the sequel we assume that a filtration {#,} is given and is fixed unless
otherwise mentioned. Let X, be a real valued (£,)-adapted process such
that for each t, X, is integrable. It is called a martingale if it satisfies

E[X,|#]= X, as. foranyt > s. 8}
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It is called a submartfngale if it satisfies
E[X,|%] = X as. foranyt > s. (2)

Further if the converse inequalities E[ X,| %] < X, hold a.s,, it is called a
supermartingale.

Let X, be a (sub)martingale and let f: R — R be an (increasing) convex
function. If f(X,) is integrable for any ¢, it is a submartingale because of
Jensen’s inequality in Theorem 1.1.6. In particular X;" = max{X,,0} is a
submartingale if X, is a submartingale. Next let X, be a martingale and let
p = LLIfE[|X,|?] < oo holds for any ¢, it is called an LP-martingale. In this
case | X,|? is a submartingale.

One of the most important examples of martingales is a Brownian
motion. We will give Lévy’s characterization of a Brownian motion
through certain martingale properties.

Theorem 1.2.1 Let X, = (X}, ..., X?), t € [0, T] be a continuous stochastic
process with X, = 0 having the mean vector 0 and the covariance matrix
V(s, t). The following statements are equivalent.

(i) X, is a Brownian motion.

(i) Both X}and XX} — VU(t, 1) i,j = 1, ..., d are martingales with respect
to the filtration generated by X,.

(i) X, is a Gaussian process, i.e. (X, ..., X, ) is subject to a Gaussian
distribution for any0 < t, < --- < t, < T. Further its covariance V{s, t)
coincides.with V(r, r), where r = min{s, t}. [J

The proof will be given in Section 2.3, see Theorem 2.3.13.

We next quote some theorems on martingales due to Doob, without giving
proofs (Theorems 1.2.2, 1.2.3, 1.2.5-1.2.7 below). The details are found in
Doob [26], Meyer [99] and other books dealing with the martingale
theory.

Theorem 1.2.2 Let X, be a submartingale such that E[ X,] is right continuous
with respect to t. Then it has a modification X, such that its sample paths are
right continuous with left hand limits a.s. []

Theorem 1.2.3

(i) Let X, te[0,00) be a right continuous submartingale. Suppose
sup, E[X;'] < 0. Then X, =lim,3 , X, exists a.s. and X, is inte-
grable. Furthermore if { X} : t € [0, c0)} is uniformly integrable, then X,,
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t € [0, o] is a submartingale. In particular if X,, t € [0, o©) is a uni-
formly integrable martingale, then X,, t € [0, 0] is a martingale.

(i) Let X,, te(—o0,0] be a right continuous submartingale. Then
X_, =lim,,_ X, existsas. [

Stopping times play important roles in the theory of submartingales. Let
T be [0, o) or [0, T]. A random variable ¢ with values in T (closure of T
in [0, oo]) is called a stopping time if {t < t} € &, holds for any t. For a
given stopping time 7, we set

F.={AeF:An{r<t}eF holdsforallte T}. 3)

It is easily verified that &, is a sub g-field of Z.

Now let X, be an (#)-adapted process, right continuous with left
hand limits. Then X, is % -measurable. Indeed, if X, is an (%)-adapted
simple process, i.e. there exists a finite partition {0 =t, <t, < <1}
of T such that X, = X, holds for any ¢ € [t, &), then X is written as
Y X, x(t <7 < tyy;) where x(4) is the indicator function of the set
A. Tt is clearly #.-measurable. Since any process which is right contin-
uous with left hand limits is approximated uniformly by a sequence of
the above simple processes a.s., X, is #,-measurable.

Let 7 and o be stopping times. Then the following properties hold.

(i) The sets {t < o}, {t = ¢} and {r < ¢} belong to both #, and Z,.
(i) Ifz <o, then F < £,

Indeed, we have {t < ¢} n{t <t} = { J{tr <5, s < ¢}, where the union is
taken for all rationals s less than or equal to ¢. Then the set belongs to %,
This proves that the set {t < o} belongs to &,. The other assertions in (i)
can be shown similarly. Next suppose t < 0. If Be #,,then Bn{c < t} =
Bn{t<t}n{o <t} e 4. Therefore we have Be %, This proves the
second assertion.

We give an example of a stopping time, which will be used later in order
to localize martingales.

Example 1.2.4 Let X, be a right continuous (£)-adapted process. Let G be
an open subset of R. The hitting time of X, to the set G or the first time such
that X, € G is defined by

1o =inf{te T: X, e G} (=sup{§e1f} if {--}=0)). 4

Then 1 is a stopping time. In fact, we have {t; > t} = [ (X, € G}, where
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the intersection is taken for all rationals r less than ¢. Therefore {t; > t} €
%, holds for any ¢.

Any stopping time can be approximated from the above by a decreasing
sequence of stopping times with discrete values. Indeed, given a stopping
time 7, we define the sequence 7,,n =1, 2,... by

0, ift=0,

T = k+1 k+1
min{;—", sup{teT}}, if%<‘t s%, k=0,1,2,...

We can easily verify that each 7, is a stopping time and the sequence {z,}
decreases to 7.

We will now quote Doob’s optional stopping time theorem and its two
consequences called Doob’s inequalities. In the first theorem, we consider
submartingales with finite time interval.

Theorem 1.2.5 Let X,,t € [0, T] be a continuous submartingale and let 1, o
be any two stopping times. Then X is integrable and satisfies

E[th'g’;] = X.min{t.a}' (5)

In particular if X, is a martingale, the equality holds in (5). [

Theorem 1.2.6 Let X, be a submartingale. Then

cP (sup X, > c) < L""X e Xt dpP 6)

s<t s<t

holds foranyc>0andteT. [

Theorem 1.2.7 Let X, be a positive submartingale. Then for any p > 1 we
have

E[sup Xs"] < qE[X?F] JorallteT, 7

s<t

where q is a positive number suchthat p™' +q ' =1. O

Markov processes

Let S be a locally compact, complete separable metric space and let Z(S)
be the set of all Borel subsets of S. By a Borel measure on S we mean a
regular measure u on %(S) such that u(K) < oo holds for any compact
subset K of S. In particular if u(S) = 1 it is called a probability. A family



10 Stochastic processes and random fields

of Borel measures {K(x, -):x€ S} on S is called a kernel if K(x, E) is
A(S)-measurable with respect to x for each E of #(S). In the following a
%(S)-measurable function is called simply measurable. Let f be a real
valued measurable function on S. We use the notation

Kf(x) = j K(x, dy)f(y) @®

if the integral is well defined for any x. The function Kf(x) is measurable
obviously.

Let {P, ,(x, -)} be a family of kernels consisting of probability distribu-
tions on S, where s < t are elements of T. It is called a transition probability
if it satisfies the Chapmann-Kolmogorov equation:

F, .(x, E) = L P, (¥, E)F; (. dy), )

forevery s <t <u,x e S and E € &(S).

Suppose that a filtration {%, : t € T} of sub o-fields of # is given. Let X,
t e T be a stochastic process with state space S adapted to (#,). The process
X, is called a Markov process with transition probability {P, ,(x, -)} if it has
the Markov property with respect to {#}:

P(X,€ E\#) = P, (X,, E) foreverys < trand Ee #4(5). (10)

A Markov process X, is called temporally homogeneous if the transition
probability {P, ,(x, A)} depends only on t — s.

In the following we will consider a temporally homogeneous Markov
process with continuous time parameter T = [0, o). The transition prob-
ability P, (x, -) is often denoted by P,(x, -). For a bounded measurable
function f on S, we denote P, f by T, f, namely

T.f(x) = L P(x, dy)f(y). (1

It is again a bounded measurable function of x. The family of operators
{T,:te T} satisfies the semigroup property T..f = T,T,f by the
Chapmann-Kolmogorov equation.

Let C(S) be the set of all real valued continuous functions on S. If Sis a
compact space, it is a separable Banach space with the supremum norm.
If S is a noncompact space, denote by C_(S) the subset of C(S) such that
lim, ,, f(x) exists and equals 0, where oo is the infinity adjoined to S as a
one point compactification. Then C_(S) is also a Banach space with the
supremum norm. Now suppose that S is compact (or noncompact). If T,
defined by (11) maps C(S) (or C,(8)) into itself and is strongly continuous
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ie. for every t, T, f converges to T,f strongly as h— 0 for any f, the
semigroup {T;} of linear operators on C(S) (or C,(S)) is called a Feller
semigroup.

Theorem 1.2.8 Let X, be a Markov process with a Feller semigroup {T,}.
Then X, has a modification such that its sample functions are right continuous
with left hand limits.

Proof We prove the theorem in the case where the state space S is compact.
The case for noncompact S is left to the reader (see Exercises 1.2.11 and
1.2.12). By the Markov property (10), we havefor s <t < u

E[T, - f(X)#] = T_,T.-. /(X)) = T, f(X)) as.

Then if « > 0 and f is non-negative we obtain

E[ J " T f(X,) du

f] < J " T f(X,) du.

s
Setting

29

U, f(x) = J e T, f(x) du, (12)
0

the above inequality is written ase " *E[ U, f(X,)|#.] < e *U, f(X,). There-

fore e U, f(X,) is a bounded supermartingale. Then by Theorem 1.2.2,

e U, f(X,) has a modification such that its sample functions are right

continuous with left hand limits. The latter property is valid for any f of

C(S).

Now let {f,} be a countable dense subset of C(S). Then the set of
functions g, = U, f,, n=1, 2, ... where a > 0 is fixed, is again a.dense
subset of C(S). Indeed, in view of the resolvent equation U, f — Uy f +
(@ — BYU, Uy f =0 (cf. Lemma 1.3.1) the range of C(S) by the map U,
is independent of a, and further it is a dense subset of C(S) since alU,f
converges to f strongly as « tends to infinity. Now let g,(X,)” be a modifi-
cation of g,(X,) such that its sample functions are right continuous and
have left hand limits. Let { be the set of all samples w such that g,(X,) (),
n=1, 2, ... are all right continuous with left hand limits. Take any w
from . Then for every t there exists a unique point X,(w) in S such
that g,(X,) (@) = ¢,(X,(®)) holds for any n. Thus g,(X,(w)) is right contin-
uous with left hand limits with respect to ¢ for all n. This implies that
X () itself is right continuous with left hand limits in the space S since
{g.} is dense in C(S). Since P(Q}) = 1, we have g,(X,) = ¢,(X,) for all n
a.s. for each t. Therefore X, is a modification of X,. [J
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Suppose we are given a temporally homogeneous transition probability
{P,(x, -)} such that it defines a Feller semigroup. We shall construct a
Markov process X, associated with {P,(x, -)} such that its sample paths are
right continuous with left hand limits. Let W be the set of all maps W from
T into S. We denote the elements of W by w and their values at t € T by
W(t) or w,. A subset A of W represented by

A= {W:@®(t,), ..., w(t,) € E,}, 13)

where 0 <, <--- <t,and E, is a Borel set in ", is called a cylinder set of
W. Let %,,......, be the collection of all cylinder sets represented above

where t,, ..., t, are fixed and E, are running over all Borel sets in $”. Then
itis a g-field of W. For each x of S we define a probability measure P{1----*

PJ(:tl ..... t,,)(A)

=JJ By, (x, dx1) By (%1, dXp) . Py, (s dX), - (14)
E,

where A4 is an element of %, . defined by (13). Then the family of
measures {P{t-~™} is consistent for each x, ie. if (¢},...,t,) is a sub-
set of (¢4,...,¢,) and A is an element of &, .
then P{1--'(4) = PYi---—)(4) holds. Now let «/(W) be the algebra
U.@,l ,,,,, ., Where the union runs over all ¢,, ..., t,of Tandn=1,2, ...
Then there exists a unique measure P, on the algebra /(W) such that
its restriction to 4, . coincides with Pt~ Let #(W) be the
smallest o-field containing /(W). Then the measure P, can be extended
uniquely to a measure P, on #(W) by Kolmogorov—Hopf’s theorem.
Denote by #(W) the completion of #(W) with respect to P, (x being
fixed).

Let {#} be the filtration generated by the stochastic process w(t). We
show that w(t) has the Markov property with respect to {#} for each
measure P,. Let s < t and A4 be an element of o/(W) represented as in (13)

where ¢, < s. Then we have by (14)

P(An{#w()eE})= f - L . P (x, dxy)... Py (X0, dY) P y(y, E)-

Denote by E, the expectation with respect to the measure P,. Then
E.[P,_(w(s), E) : A]is also written as the right hand side of the above. This
implies

E.[f#(®): A] = E,[T-.f(%(5): A] (15)
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for any f of C,.(S) (or of C(S)if S is compact) and A of s(w(r) : r < s). Further
f(w(t)) is right continuous in L2, In fact we have by (15)

E.[(f(W(s + &) — f(%(s)))*]
= E,[T(f?)(%(s)) — 2T f(#(5)f(%(s)) + f(#(5))*]

which converges to 0 as ¢ — 0. Then the above equality (15) is valid for any
A of #,. Therefore w(t) is a Markov process with the Feller semigroup {T;}.
Then w(t) has a modification X,(w) which is right continuous with left hand
limits by the previous theorem.

Now let W be the set of all w € W such that w(z) is right continuous with
left hand limits. Then for almost all w, the right continuous modification
X(W) = {X,(W):t e T} can be regarded as an element of W. Let Z(W) be
the smallest o-field of W containing all cylinder sets of W. Then the set
{w: X(w) € B} belongs to #1 (W) for any B of #(W). We define the law of
(X,, P,) on the space (W, Z(W)) by

P(B) = P.({%: X (W) € B}). (16)

The expectation by the measure P, is denoted by E,. Note that P,(B)
is measurable with respect to x for any B of #(W). The triple
(W, Z(W), P,:x € S) is called a right continuous Markov process with the
Feller semigroup {T,} or simply a Feller process.

Now for s € [0, o0), let §, be a map from W into itself such that (Gw), =
w(s + t) holds for all ¢. It is a measurable map from (W, #(W)) into itself.
The family {6,} satisfies the semigroup property 6,6, = 6,.,.

We shall extend the Markov property of the Feller process.

Theorem 1.2.9 Let (W, B(W), P.:x € S) be a Feller process. Then each
P, satisfies

P(6;'B|#,) = P(B) for every B € (W), 17
where {Z,} is the filtration generated by w(t).
Proof Let A and B be the cylinder sets {w:({(w(t,),..., w(t,)) € E,} and
{w:(w(u,), ..., w(u,)) € E,} respectively, where ¢, < s and E, and E,, are
Borel sets of $” and S™ respectively. Using the Markov property, we can

show that both of P,(6; ' B~ A) and E,[P,,(B): A] are represented by the
same quantity below:

j' “ J‘ Pt,(x, dxl)' ” Pu,+s—t,,(xm dyl) T Pum—u,,,_,(ym—la dym)
E,xE,,
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Therefore we have P,(6;'B n A) = E,[P,(B): A] for the above cylinder
sets A and B. The equality can be extended to any B of #(W) and A of .
Thus the theorem is established. [J

Exercise 1.2.10 Suppose that a filtration {%:te[0, 0)} (or
{Z,:t e (—0,0]}) of sub g-fields of F is given. Let X be a real random
variable such that E[|X|?] < o for some p> 1. Show that X, =
E[X|#] is a martingale. Let X, be a right continuous modification of
X,. Show that X, = lim,_ X, (or X_,, = lim,,__ X, respectively) exists
and equals E[X|#_] (or E[X|%_,] respectively) where %, is the least
o-field including | J, & (or #_, = (: %, respectively). (Hint: Show that
{X,:t€[0, )} is uniformly integrable and then show E[X,:A]=
E[X : A] holds for any 4 of #,.)

Exercise 1.2.11 (Strong Markov property) Let X, be a right continuous
Markov process associated with the Feller semigroup {T;}. Let {#} be the
filtration generated by X,. Let 7 be a stopping time and #, be the o-field
defined by (3). Show that

E[f(X.+.): Al = E[Tf(X,): A]  forevery Ae &,

holds for any f e C(S) (or C,(S) if S is noncompact). (Hint: show the
above first in the case where 7 is a stopping time with discrete values. Then
for general t, approximate it from the above by a decreasing sequence
of stopping times with discrete values.)

Exercise 1.2.12 (Proof of Theorem 1.2.8 for noncompact case) Suppose
that S is noncompact in Theorem 1.2.8. Let § = S U {0} be the one point
compactification of S.

(i) Show that X, has a modification X, with values in § such that its
sample paths are right continuous with left hand limits with respect
to the topology of S.

(i) Let {G,} be a decreasing sequence of open neighborhoods of c such
that (), G, = {co}. Let g, be the first time that X, hits the set G, and
let 6,, = lim, 6,. Let « > 0. Show

E|:J‘°0 e (X)) dt] = E[Jcm e *f(X,) du:l + E[e™*=U,f(X,_ )],
)

0

where X, _ =1lim, X, and U,f is defined by (12). Deduce from this that
o, = o a.s. (Hint: use the strong Markov property of X,).
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1.3 Ergodic properties of Markov processes

Recurrent and transient processes

Let (W, #(W), P.: x € S) be a Feller process constructed in the previous
section associated with the Feller semigroup {T;}, where S is a locally
compact complete separable metric space. We assume that the transition
probability has a positive, continuous density function.

Condition (A) There exists a Borel measure y on S supported by S, and a
strictly positive function p,(x, y) continuous in(t, x, y) € (0, ) x S* such that
the transition probability P,(x, dy) equals p,(x, y)u(dy). O

Let B(S) be the set of all bounded measurable functions on S and let BC(S)
be the set of all bounded continuous functions on S. Each T, maps B(S)
into BC(S). Indeed if f of B(S) satisfies 0 < f < 1,both of T, f and T}(1 — f)
are lower semicontinuous and their sum is constant 1. Then T, f has to be
continuous. Obviously the last property is valid for any f of B(S). The
semigroup with this property is called a strong Feller semigroup.

The Feller process is called recurrent in the sense of Harris if

J 2(A)(w@)) dt = © as. P, (1)
0
is satisfied for every x € § whenever u(A4) > 0. Further, the Feller process
is called transient if
sup E, U (K)(w(®) dt] <o @
x€eS 0
holds for any compact subset K of S.

We will show that any Feller process satisfying Condition (A) is either
transient or recurrent in the sense of Harris. Our discussion of this problem
is similar to Revuz [112]. As an intermediate step we introduce a suitable
Markov process -with discrete time parameter and show first a similar
transient—recurrent dichotomy for this process (Lemma 1.3.3 below). Then
it will be applied to our Feller process.

Let h be a bounded non-negative measurable function on S. Set

Unf(x) = E, U: exp {— L h(w(s)) dS} Sw(@®) dt] - ©)

It is well defined; at least f is a non-negative measurable function. Setting
U,(x, E) = U,x(E)(x), it defines a kernel if U,(x, K) < oo holds for any
compact K.
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Lemma 1.3.1
(1) The following relation holds:

Uh(x)=1-E, [exp {— J ? h(w(s)) ds}]. 4)
0

(ii) Let h=k=>0 and f>0. Then U, and U, satisfy the resolvent
equation:

Uef = Uf = Uyh = BUf = Uih — B U, f. &)

(i) If U,f is a bounded function, it is continuous.
Proof Note the equality

J ” exp { —~J‘! h(w(s)) ds} h(w())dt =1 —exp {— J ? h(w(s)) ds}.
] 0 (4]

Then equality (4) is immediate. We have by Theorem 1.2.9 (Markov
property),
]

Uif(w) = E, [ r) exp { - f k(w.) du}f (w,)dv

Therefore,

Uu(h — k) U, f(x)

—E, [ f " exp { - f "hw) ds} (hiw) — k(w,)
[1] 0
X (Jw exp {— J ’ k(w,) du} fw,) dv) dt:I
=E,[ r fow) { f "exp { - f " (hwy) — k(wy) ds}
(4] 4] 0
x (h(w,) — k(w,)) dt} exp { — Jv kw,) du} dv:l
[4]
- E[ J ) f(wv)[l —exp { - f " (h(wy) — k(ws))ds}]
4] [1]
X exp {— f’ kw,) du} dv]
[4]

= U f(¥) — U, f(%). O]

This proves the resolvent equation (5).



